Inverse-design magnonics

In recent years, the area of magnonics has seen an enhancement with various creative devices, made possible through devoted skill and detailed investigation. The implementation of machine learning and inverse design, well-established in photonics and the creation of big-scale integrated CMOS circuits, has now been extended into magnonics. This exciting blend opens up new opportunities for magnonic technology. It is ready for a fast and transformative ascent with advanced computational design methods. The powerful impact of artificial intelligence, which is quickly changing our daily lives, also has great potential to advance the field of magnonics.

The inverse-design approach elegantly prioritizes the definition of desired outcomes, leveraging feedback-driven computational algorithms, such as those found in machine learning, to architect devices that fulfill these specified functions. Emblematic of its versatility, two parallel publications have heralded the success of inverse design in magnonics. Illustrating the method's broad applicability, an array of magnonic features—linear, nonlinear, and nonreciprocal—were explored as documented in [Nature Commun. 12, 2636 (2021)], employing the technique to invent a magnonic (de)multiplexer, a nonlinear switch, and a Y-circulator. This was embodied in a three-port prototype, ingeniously crafted from a ferromagnetic rectangle structured by square voids, guided by a direct binary search algorithm. Furthermore, in [Nature Commun. 12, 6422 (2021)], researchers embraced a higher tier of complexity, inverse-designing a neural network manifested as a YIG domain with a precise arrangement of nanomagnets. This demonstrated that neuromorphic computing tasks, including the intricate signal routing required for nonlinear activations, can be adeptly executed through the manipulation of spin-wave travel and interference—with the intricate task of vowel recognition showcasing the prowess of the inverse-designed magnonic neural network.

Our group, together with the Physics of Functional Materials group, is investigating the concept of inverse design magnonics from different perspectives. First, we have just shown that it is possible to perform inverse design directly in the experiment, and a universal inverse-design magnonic device has been fabricated [Nature Electr. 2025]. The device has been used to implement various high-frequency components and can handle data in the GHz range. In follow-up studies, we have shown that it is also highly efficient in implementing nonlinear operations, including logic gates for binary data processing. In parallel, we develop new approaches [arXiv 2411.19109] to numerically solve inverse problems of arbitrary complexity. Finally, the experimental realisation of nanoscale and non-volatile inverse design data processing units is a high priority for our research.

PI: Univ.-Prof. Dr. Andrii Chumak

Project Staff: P. Jäger, B. Valenta,  F. Majcen,  A. Voronov,  N. Zenbaa,  Dr. F. Vilsmeier

Collaborators:

Physics of Functional Materials, Faculty of Physics, University of Vienna
Dr. F. Bruckner, Univ.-Prof. Dr. D. Suess

University for Continuing Education Krems
Univ.-Doz. Dipl.-Ing. Dr. T. Schref

School of Physics, Huazhong University of Science and Technology
Dr. A. Papp, Assoc.-Prof. Dr. G. Csaba

Current projects

FWF Logo
Inverse-Design Micromagnetic-Eddy-Current Solver (IMECS)

FWF project PAT 3864023 “Inverse-Design Micromagnetic-Eddy-Current Solver (IMECS)”.
01.10.2024 – 30.09.2028
Principal Investigator: Dipl.-Ing. Dr.techn. Florian Bruckner

Past projects

FWF Logo
Non-reciprocal 3D architectures for magnonic functionalities (FWF “MagFunc")

FWF project I 4917-N “Non-reciprocal 3D architectures for magnonic functionalities”.
01.10.2020 – 30.09.2024
Principal Investigator: Univ.-Prof. Dr. Andrii Chumak

FWF Logo
Nano-scale magnonic circuits for novel computing systems (ERC StG "MagnonCircuits")

This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 678309).
01.06.2016 – 30.11.2021
Principal Investigator: Univ.-Prof. Dr. Andrii Chumak

Project "MagFunc" publications

2025


Zenbaa, N., Levchenko, K. O., Panda, J., Davídková, K., Ruhwedel, M., Knauer, S., Lindner, M., Dubs, C., Wang, Q., Urbánek, M., Pirro, P., & Chumak, A. V. (Accepted/In press). YIG/CoFeB bilayer magnonic isolator. IEEE Magnetics Letters. https://doi.org/10.1109/LMAG.2025.3551990

2024


Wojewoda, O., Holobrádek, J., Pavelka, D., Pribytova, E., Krčma, J., Klíma, J., Panda, J., Michalička, J., Lednický, T., Chumak, A. V., & Urbánek, M. (2024). Unidirectional propagation of zero-momentum magnons. Applied Physics Letters, 125(13), Article 132401. https://doi.org/10.1063/5.0218478

Wang, Q., Verba, R., Davídková, K., Heinz, B., Tian, S., Rao, Y., Guo, M., Guo, X., Dubs, C., Pirro, P., & Chumak, A. V. (2024). All-magnonic repeater based on bistability. Nature Communications, 15(1), Article 7577. https://doi.org/10.1038/s41467-024-52084-0

Serha, R., Voronov, A., Schmoll, D., Verba, R. V., Levchenko, K., Koraltan, S., Davidková, K., Budinská, B., Wang, Q., Dobrovolskiy, O., Urbánek, M., Lindner, M., Reimann, T., Dubs, C., Gonzalez-Ballestero, C., Abert, C., Suess, D., Bozhko, D. A., Knauer, S., & Chumak, A. (2024). Magnetic anisotropy and GGG substrate stray field in YIG films down to millikelvin temperatures. npj Spintronics, 2, Article 29. https://doi.org/10.1038/s44306-024-00030-7

Wang, Q., Csaba, G., Verba, R., Chumak, A. V., & Pirro, P. (2024). Nanoscale magnonic networks. Physical Review Applied, 21(4), Article 040503. https://doi.org/10.1103/PhysRevApplied.21.040503

Finocchio, G., Incorvia, J. A. C., Friedman, J. S., Yang, Q., Giordano, A., Grollier, J., Yang, H., Ciubotaru, F., Chumak, A. V., Naeemi, A. J., Cotofana, S. D., Tomasello, R., Panagopoulos, C., Carpentieri, M., Lin, P., Pan, G., Yang, J. J., Todri-Sanial, A., Boschetto, G., ... Bandyopadhyay, S. (2024). Roadmap for unconventional computing with nanotechnology. Nano Futures, 8, Article 012001. https://doi.org/10.1088/2399-1984/ad299a

2023


Casulleras, S., Knauer, S., Wang, Q., Romero-Isart, O., Chumak, A. V., & Gonzalez-Ballestero, C. (2023). Generation of Spin-Wave Pulses by Inverse Design. Physical Review Applied, 19(6), Article 064085. https://doi.org/10.1103/PhysRevApplied.19.064085

Project "MagnonCircuits" publications

2023


Breitbach, D., Schneider, M., Heinz, B., Kohl, F., Maskill, J., Scheuer, L., Serha, R. O., Brächer, T., Lägel, B., Dubs, C., Tiberkevich, V. S., Slavin, A. N., Serga, A. A., Hillebrands, B., Chumak, A. V., & Pirro, P. (2023). Stimulated Amplification of Propagating Spin Waves. Physical Review Letters, 131(15), Article 156701. https://doi.org/10.1103/PhysRevLett.131.156701

2022


Heinz, B., Mohseni, M., Lentfert, A., Verba, R., Schneider, M., Lägel, B., Levchenko, K., Brächer, T., Dubs, C., Chumak, A. V., & Pirro, P. (2022). Parametric generation of spin waves in nanoscaled magnonic conduits. Physical Review B, 105(14), Article 144424. https://doi.org/10.1103/PhysRevB.105.144424, https://doi.org/10.48550/arXiv.2106.10727

Böttcher, T., Ruhwedel, M., Levchenko, K. O., Wang, Q., Chumak, H. L., Popov, M. A., Zavislyak, I. V., Dubs, C., Surzhenko, O., Hillebrands, B., Chumak, A. V., & Pirro, P. (2022). Fast long-wavelength exchange spin waves in partially-compensated Ga:YIG. Applied Physics Letters, 120(10), Article 102401. https://doi.org/10.1063/5.0082724

2021


Schneider, M., Breitbach, D., Serha, R. O., Wang, Q., Serga, A. A., Slavin, A. N., Tiberkevich, V. S., Heinz, B., Lägel, B., Brächer, T., Dubs, C., Knauer, S., Dobrovolskiy, O., Pirro, P., Hillebrands, B., & Chumak, A. (2021). Control of the Bose-Einstein Condensation of Magnons by the Spin Hall Effect. Physical Review Letters, 127(23), Article 237203. https://doi.org/10.1103/PhysRevLett.127.237203

Schneider, M., Breitbach, D., Serha, R. O., Wang, Q., Mohseni, M., Serga, A. A., Slavin, A. N., Tiberkevich, V. S., Heinz, B., Brächer, T., Lägel, B., Dubs, C., Knauer, S., Dobrovolskiy, O., Pirro, P., Hillebrands, B., & Chumak, A. (2021). Stabilization of a nonlinear magnonic bullet coexisting with a Bose-Einstein condensate in a rapidly cooled magnonic system driven by spin-orbit torque. Physical Review B, 104(14), Article L140405. https://doi.org/10.1103/PhysRevB.104.L140405

Mohseni, M., Wang, Q., Heinz, B., Kewenig, M., Schneider, M., Kohl, F., Lägel, B., Dubs, C., Chumak, A. V., & Pirro, P. (2021). Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices. Physical Review Letters, 126(9), Article 097202. https://doi.org/10.1103/PhysRevLett.126.097202

Heinz, B., Wang, Q., Schneider, M., Weiß, E., Lentfert, A., Lägel, B., Brächer, T., Dubs, C., Dobrovolskiy, O. V., Pirro, P., & Chumak, A. V. (2021). Long-range spin-wave propagation in transversely magnetized nano-scaled conduits. Applied Physics Letters, 118(13), Article 132406. https://doi.org/10.1063/5.0045570

Bunyaev, S. A., Budinska, B., Sachser, R., Wang, Q., Levchenko, K., Knauer, S., Bondarenko, A. V., Urbánek, M., Guslienko, K. Y., Chumak, A. V., Huth, M., Kakazei, G. N., & Dobrovolskiy, O. V. (2021). Engineered magnetization and exchange stiffness in direct-write Co-Fe nanoelements. Applied Physics Letters, 118(2), Article 022408. https://doi.org/10.1063/5.0036361

2020


Heinz, B., Wang, Q., Verba, R., Vasyuchka, V. I., Kewenig, M., Pirro, P., Schneider, M., Meyer, T., Lägel, B., Dubs, C., Brächer, T., Dobrovolskiy, O. V., & Chumak, A. V. (2020). Temperature dependence of spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides. Ukrainian Journal of Physics, 65(12), 1094-1108. https://doi.org/10.15407/ujpe65.12.1094

Wang, Q., Hamadeh, A., Verba, R., Lomakin, V., Mohseni, M., Hillebrands, B., Chumak, A. V., & Pirro, P. (2020). A nonlinear magnonic nano-ring resonator. npj Computational Materials, 6(1), Article 192. https://doi.org/10.1038/s41524-020-00465-6

Dobrovolskiy, O. V., Bunyaev, S. A., Vovk, N. R., Navas, D., Gruszecki, P., Krawczyk, M., Sachser, R., Huth, M., Chumak, A. V., Guslienko, K. Y., & Kakazei, G. N. (2020). Spin-wave spectroscopy of individual ferromagnetic nanodisks. Nanoscale, 12(41), 21207-21217. https://doi.org/10.1039/d0nr07015g

Mahmoud, A., Ciubotaru, F., Vanderveken, F., Chumak, A. V., Hamdioui, S., Adelmann, C., & Cotofana, S. (2020). Introduction to spin wave computing. Journal of Applied Physics, 128(16), Article 161101. https://doi.org/10.1063/5.0019328

Dobrovolskiy, O. V., Vodolazov, D. Y., Porrati, F., Sachser, R., Bevz, V. M., Mikhailov, M. Y., Chumak, A. V., & Huth, M. (2020). Ultra-fast vortex motion in a direct-write Nb-C superconductor. Nature Communications, 11(1), Article 3291. https://doi.org/10.1038/s41467-020-16987-y

Heinz, B., Brächer, T., Schneider, M., Wang, Q., Lägel, B., Friedel, A. M., Breitbach, D., Steinert, S., Meyer, T., Kewenig, M., Dubs, C., Pirro, P., & Chumak, A. V. (2020). Propagation of Spin-Wave Packets in Individual Nanosized Yttrium Iron Garnet Magnonic Conduits. Nano Letters, 20(6), 4220-4227. https://doi.org/10.1021/acs.nanolett.0c00657

Schneider, M., Brächer, T., Breitbach, D., Lauer, V., Pirro, P., Bozhko, D. A., Musiienko-Shmarova, H. Y., Heinz, B., Wang, Q., Meyer, T., Heussner, F., Keller, S., Papaioannou, E. T., Lägel, B., Löber, T., Dubs, C., Slavin, A. N., Tiberkevich, V. S., Serga, A. A., ... Chumak, A. (2020). Bose-Einstein condensation of quasiparticles by rapid cooling. Nature Nanotechnology, 15, 457–461. https://doi.org/10.1038/s41565-020-0671-z

Mohseni, M., Kewenig, M., Verba, R., Wang, Q., Schneider, M., Heinz, B., Kohl, F., Dubs, C., Lägel, B., Serga, A. A., Hillebrands, B., Chumak, A. V., & Pirro, P. (2020). Parametric Generation of Propagating Spin Waves in Ultrathin Yttrium Iron Garnet Waveguides. Physica Status Solidi. Rapid Research Letters, 14(4), Article 2000011. https://doi.org/10.1002/pssr.202000011

Frey, P., Nikitin, A. A., Bozhko, D. A., Bunyaev, S. A., Kakazei, G. N., Ustinov, A. B., Kalinikos, B. A., Ciubotaru, F., Chumak, A. V., Wang, Q., Tiberkevich, V. S., Hillebrands, B., & Serga, A. A. (2020). Reflection-less width-modulated magnonic crystal. Communications Physics, 3(1), Article 17. https://doi.org/10.1038/s42005-020-0281-y

Wang, Q., Kewenig, M., Schneider, M., Verba, R., Kohl, F., Heinz, B., Geilen, M., Mohseni, M., Lägel, B., Ciubotaru, F., Adelmann, C., Dubs, C., Cotofana, S. D., Dobrovolskiy, O. V., Brächer, T., Pirro, P., & Chumak, A. V. (2020). A magnonic directional coupler for integrated magnonic half-adders. Nature Electronics, 3, 765–774. https://doi.org/10.1038/s41928-020-00485-6

2019


Prokopenko, O., Bozhko, D. A., Tyberkevych, V. S., Chumak, A., Vasyuchka, V., Serga, A. A., Dzyapko, O., Verba, R. V., Talalaevskij, A., Slobodianiuk, D., Kobljanskyj, Y. V., Moiseienko, V. A., Sholom, S. V., & Malyshev, V. Y. (2019). Recent Trends in Microwave Magnetism and Superconductivity. Ukrainian Journal of Physics, 64(10), 888-926. Article 888. https://doi.org/10.15407/ujpe64.10.888