ERC StG MagnonCircuits

Nano-scale magnonic circuits for novel computing systems

This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 678309). 

Duration: 01.06.2016 – 30.11.2021

Principal investigator: Univ.-Prof. Dr. Andrii Chumak

Scientific Project Staff Universität Wien: Dr. Qi Wang (postdoc & PhD student), Elisabeth Weiß (master's student),   Andrey Voronov (PhD student),  Dr. Michael Kerber (postdoc), Dr. Sebastian Knauer (postdoc), PD Dr. Oleksandr V. Dobrovolskiy (senior scientist), Aram Sajdak (master' student), Fabian Polnitzky (intern), Simon Peinhaupt (intern), Stefanie North (intern)

Scientific Project Staff TU Kaiserslautern: Michael Schneider (PhD student), Björn Heinz (PhD student), Thomas Brächer (postdoc)

Magnons – quanta of spin waves – propagating in magnetic materials having nano-scale wavelengths and carrying information in the form of a spin angular momentum, can be used as data carriers in next-generation nano-sized low-loss information processing systems. The low losses of magnonic systems can be reached due to the absence of translational electron motion associated with Joule heating and extremely low magnetic damping in the dielectric Yttrium-Iron-Garnet (YIG) material used.

The recent revolutionary progress in the growth of high-quality YIG films with nanometer thickness, and in the patterning of these films, opened a way to the practical development of nano-scale magnonic computing systems. However, the decrease in sizes of YIG structures to sub-100 nm requires the development of the physical knowledge base for understanding linear and nonlinear magnetization dynamics in nanostructures.

The strategic goal of the proposed MAGNONCIRCUITS research program is to make a transformative change in the data processing paradigm from traditional electronics to magnon spintronics. The ingredients required for such a transformation and addressed by MAGNONCIRCUITS are: (i) The fabrication of magnon conduits of sub-100 nm width, the development of a toolbox enabling excitation and detection of fast exchange magnons, and the understanding of the physics underlying magnon dynamics at the nano-scale in the exchange interac-tion regime. (ii) Employment of such novel physical phenomena as spin pumping, spin transfer torque and spin Hall effect to overcome the fundamental limitations of the state-of-the-art approaches in magnon spintron-ics, and to compensate the dissipation in magnonic circuits. (iii) Realization of two-dimensional magnonic circuits required for transport and processing of magnon-carried data. A proof-of-concept models of two nano-scale devices – majority gate and magnon transistor – will be developed in the course of MAGNONCIRCUITS.

ERC MagnonCircuits mini-report

The ERC Starting Grant project “MagnonCircuits” started in June, 2016 and officially finished in November, 2021. During this time, it has been a focus of excellent research in the field of magnonics, helping the development of magnon-based data processing systems. Compared to the current electronic system, these could lower our ever-increasing computing energy consumption as well as opening the door to significantly faster and more powerful next-generation information systems.

This research project was conceived as an ambitious and high-risk investigation. To pursue it, three aims were established. The first one, led by PhD student Björn Heinz, focused on the physical background, development, and study of nano-sized magnon conduits for exchange magnonics. Michael Schneider, PhD student at the TU Kaiserslautern, worked on the second aim: employing spin pumping and spin-transfer torque in magnetic dielectrics. Lastly, Qi Wang, also a PhD student and then postdoc at the University of Vienna, worked on the realization of two-dimensional sized magnonic circuits.

The project’s research went beyond state of the art, and many novelties have been discovered thanks to it. Among them, we can highlight the fabrication of the first magnonic structures and waveguides of the lateral dimension of 50 nm and understanding physical spin-wave properties in them [PRL 19, NanoLett. 20], the discovery of a conceptually new method of the formation of magnon Bose-Einstein Condensation by rapid cooling [Nature Nanotech. 20], and the development of nonlinear directional couplers, which replaces most magnon circuit linear components [Nature Electr. 20]. The inverse-design magnonics concept was an entirely unforeseen development, which opened a highly-attractive new field within magnonics [Nature Commun. 21]. The results were highlighted in many prestigious review papers and roadmaps [Spintronics in the Microelectronic Industry, 2021 Magnonics Roadmap, Roadmap on Spin-Wave Computing].

 

ERC StG MagnonCircuits in numbers
  • 40 peer-reviewed scientific articles (full list of publications)
  • 3 PhD, 1 Master’s and 1 Diploma’s theses
  • 10 press releases and 5 videos
  • 78 participations in conferences

 

The scientific impact of the project is demonstrated in its discoveries but it has also had a personal impact on many of its members. Since the project started, its principal investigator, Andrii Chumak, has moved from leading a junior research group at the TU Kaiserslauten, part of Prof. Burkard Hillebrands’s group, to establishing his own research group Nanomagnetism and Magnonics at the University of Vienna, with up to 15 people, among them Qi Wang, who moved to Vienna as a postdoctoral researcher.

Another aspect that has been important to the project is science communication. Through press releases, videos, and an updated website, new steps and discoveries around the project have been communicated to a broad audience.

All in all, the project has surpassed its scientific goals and helped the establishment and development of magnonics. However, new discoveries open new questions and research directions, which the Nanomagnetism and Magnonics research group keeps investigating.

Science communication – Videos

Nano-scaled yttrium iron garnet conduits for magnonic networks (Björn Heinz)

Inverse-design magnonics (Dr. Qi Wang)

Magnetism and Magnetics Technology in the 21st Century (IEEE)

Nano-Magnonics Progress Report (Andrii Chumak)

Science communication – Press releases

List of selected publications

  • Fast long-wavelength exchange spin waves in partially-compensated Ga:YIG
    T. Böttcher, M. Ruhwedel, K. O. Levchenko, Q. Wang, H. L. Chumak, M. A. Popov, I. V. Zavislyak, C. Dubs, O. Surzhenko, B. Hillebrands, A. V. Chumak, P. Pirro
    arXiv:2112.11348
  • Roadmap on spin-wave computing
    A. V. Chumak, P. Kabos, M. Wu, C. Albert, C. Adelman,  A. Adeyeye, J. Åkerman, F. G. Aliev, A. Anane, A. Awad, C. H. Back, A. Barman, G. E. W. Bauer, M. Becherer, E. N. Beginin, V. A. S. V. Bittencourt, Y. M. Blanter, P. Bortolotti, I. Boventer, D. A. Bozhko, S. A. Bunyaev, J. J. Carmiggelt, R. R. Cheenikundil, F. Ciubotaru, S. Cotofana, G. Csaba, O. V. Dobrovolskiy, C. Dubs, M. Elyasi, K. G. Fripp, H. Fulara, I. A. Golovchanskiy, C. Gonzalez-Ballestero, P. Graczyk, D. Grundler, P. Gruszecki, G. Gubbiotti, K. Guslienko, A. Haldar, S. Hamdioui, R. Hertel, B. Hillebrands, T. Hioki, A. Houshang, C.-M. Hu, H. Huebl, M. Huth, E. Iacocca, M. B. Jungfleisch, G. N. Kakazei, A. Khitun, R. Khymyn, T. Kikkawa, M. Kläui, O. Klein, J. W. Kłos, S. Knauer, S. Koraltan, M. Kostylev, M. Krawczyk, I. N. Krivorotov, V. V. Kruglyak, D. Lachance-Quirion, S. Ladak, R.Lebrun, Y. Li, M. Lindner, R. Macêdo, S. Mayr, G. A. Melkov, S. Mieszczak, Y. Nakamura, H. T. Nembach, A. A. Nikitin, S. A. Nikitov, V. Novosad, J. A. Otalora, Y. Otani, A. Papp, B. Pigeau, P. Pirro, W. Porod, F. Porrati, H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A.A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko , K. Szulc, T. Taniguchi, M. Urbánek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S. P. Wolski, X. Zhang H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A.A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko , K. Szulc,T. Taniguchi, M. Urbánek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S. P. Wolski, X. Zhang H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A.A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko , K. Szulc, T. Taniguchi, M. Urbánek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S. P. Wolski, X. Zhang Romero-Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A.A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko , K. Szulc, T. Taniguchi, M. Urbánek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S. P. Wolski, X. Zhang Romero-Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A.A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko , K. Szulc, T. Taniguchi, M. Urbánek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S. P. Wolski, X. Zhang 
    IEEE Transactions on Magnetics
    accepted manuscript
  • Numerical model for 32-bit magnonic ripple carry adder
    U. Garlando, Q. Wang, O. V. Dobrovolskiy, A. V. Chumak, F. Riente
    arXiv:2109.12973
  • Parametric generation of spin waves in nano-scaled magnonic conduits
    B. Heinz, M. Mohseni, A. Lentfert, R. Verba, M. Schneider, B. Lägel, K. Levchenko, T. Brächer, C. Dubs, A. V. Chumak, P. Pirro
    arXiv:2106.10727
  • Control of the Bose-Einstein condensation of magnons by the Spin Hall effect
    M. Schneider, D. Breitbach, R. Serha, Q. Wang, A. A. Serga, A. N. Slavin, V. S. Tiberkevich, B. Heinz, B. Lägel, T. Brächer, C. Dubs, S. Knauer, O. V. Dobrovolskiy, P. Pirro, B. Hillebrands, A. V. Chumak
    Phys. Rev. Lett. 127, 237203 (2021) 
  • Stabilization of a nonlinear bullet coexisting with a Bose-Einstein condensate in a rapidly cooled magnonic system driven by a spin-orbit torque
    M. Schneider, D. Breitbach, R. O. Serha, Q. Wang, M. Mohseni, A. A. Serga, A. N. Slavin, V. S. Tiberkevich, B. Heinz, T. Brächer, B. Lägel, C. Dubs, S. Knauer, O. V. Dobrovolskiy, P. Pirro, B. Hillebrands, A. V. Chumak
    Phys. Rev. B 104, L140405 (2021)
  • The 2021 Magnonics Roadmap
    A. Barman, G. Gubbiotti, S. Ladak, A. O. Adeyeye, M. Krawczyk, J. Gräfe, C. Adelmann, S. Cotofana, A. Naeemi, V. I. Vasyuchka, B. Hillebrands, S. A. Nikitov, H. Yu, D. Grundler, A. V. Sadovnikov, A. A. Grachev, S. E. Sheshukova, J-Y. Duquesne, M. Marangolo, G. Csaba, W. Porod, V. E. Demidov, S. Urazhdin, S. O. Demokritov, E. Albisetti, D. Petti, R. Bertacco, H. Schultheiss, V. V. Kruglyak, V. D. Poimanov, S. Sahoo, J. Sinha, H. Yang, M. Münzenberg, T. Moriyama, S. Mizukami, P. Landeros, R. A. Gallardo, G. Carlotti, J-V. Kim, R. L. Stamps, R. E. Camley, B. Rana, Y. Otani, W. Yu, T. Yu, G. E. W. Bauer, C. Back, G. S. Uhrig, O. V. Dobrovolskiy, B. Budinska, H. Qin, S. van Dijken, A. V. Chumak, A. Khitun, D. E. Nikonov, I. A. Young, B. W. Zingsem and M. Winklhofer
    J. Phys.: Condens. Matter 33, 413001 (2021)
  • Inverse-design magnonic devices
    Q. Wang, A.V. Chumak, P. Pirro
    Nat. Commun. 12, 2636 (2021)
  • Long-range spin-wave propagation in transversely magnetized nano-scaled conduits
    B. Heinz, Q. Wang, M. Schneider, E. Weiß, A. Lentfert, B. Lägel, T. Brächer, C. Dubs, O. V. Dobrovolskiy, P. Pirro, A. V. Chumak
    Appl. Phys. Lett. 118, 132406 (2021)
  • Opportunities and challenges for spintronics in the microelectronic industry (Topical Review) 
    B. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov, J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A. V. Chumak, A. Hirohata, S. Mangin, S. O. Valenzuela,  M. C. Onbasli, M. d'Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, P. Bortolotti
    Nat. Electron. 3, 446459 (2020)
  • Introduction to spin wave computing (Tutorial Article)
    A. Mahmoud, F. Ciubotaru, F. Vanderveken, A. V. Chumak, S. Hamdioui, C. Adelmann and S. Cotofana
    J. of Appl. Phys. 128, 161101 (2020)
  • Propagation of coherent spin waves in individual nano-sized yttrium iron garnet magnonic conduits 
    B. Heinz, T. Brächer, M. Schneider, Q. Wang, B. Lägel, A. M. Friedel, D. Breitbach, S. Steinert, T. Meyer, M. Kewenig, C. Dubs, P. Pirro, and A. V. Chumak
    Nano Lett. 20, 4220 (2020)
  • Bose-Einstein condensation of quasi-particles by rapid cooling
    M. Schneider, T. Brächer, D. Breitbach, V. Lauer, P. Pirro, D. A. Bozhko, H. Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E. Th. Papaioannou, B. Lägel, T. Löber, C. Dubs, A. N. Slavin, V. S. Tiberkevich, A. A. Serga, B. Hillebrands, and A. V. Chumak
    Nat. Nanotechnol. 15, 457 (2020)
  • A magnonic directional coupler for integrated magnonic half adders
    Q. Wang, M. Kewenig, M. Schneider, R. Verba, F. Kohl, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, S. D. Cotofana, O. V. Dobrovolskiy, T. Brächer, P. Pirro, and A. V. Chumak
    Nat. Electron. 3, 765 (2020)
  • Magnon spintronics: Fundamentals of magnon-based computing
    A. V. Chumak
    in: Spintronics Handbook: Spin Transport and Magnetism (2nd ed., eds. E. Y. Tsymbal, I. Žutić) 247-302 (CRC Press, Florida, 2019)
    arXiv:1901.08934
  • Nanoscale spin-wave wake-up receive
    Q. Wang, T. Brächer, M. Mohseni, B. Hillebrands, V. I. Vasyuchka, A. V. Chumak, P. Pirro
    Appl. Phys. Lett. 115, 092401 (2019)
  • Spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides 
    Q. Wang, B. Heinz, R. Verba, M. Kewenig, P. Pirro, M. Schneider, T. Meyer, B. Lägel, C. Dubs, T. Bräche, and A. V. Chumak
    Phys. Rev. Lett. 122, 247202 (2019)
  • Magnon-Fluxon interaction in a ferromagnet/superconductor heterostructure
    O. V. Dobrovolskiy, R. Sachser, T. Brächer, T. Fischer, V. V. Kruglyak, R. V. Vovk, V. A. Shklovskij, M. Huth, B. Hillebrands, and A. V. Chumak
    Nat. Phys. 15, 477 (2019)
  • Reconfigurable nano-scale spin-wave directional coupler
    Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, and A. V. Chumak
    Sci. Adv. 4, e1701517 (2018)
  • Magnonic crystals for data processing
    A. V. Chumak, A. A. Serga, and B. Hillebrands
    J. Phys. D: Appl. Phys. 50, 244001 (2017)
  • Experimental prototype of a spin-wave majority gate
    T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga, I. I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, and A. V. Chumak
    Appl. Phys. Lett. 110, 152401 (2017)
  • Temporal evolution of auto-oscillations in a YIG/Pt microdisc driven by pulsed spin Hall effect-induced spin-transfer torque
    V. Lauer, M. Schneider, Th. Meyer, Th. Braecher, P. Pirro, B. Heinz, F. Heussner, B. Laegel, M. C. Onbasli, C. A. Ross, B. Hillebrands, A. V. Chumak
    IEEE Magn. Lett. 8, 3104304 (2017)