Spin-orbit phenomena and magnon spintronics

Information coded into charge or spin currents is converted into magnon currents, processed within the magnonic system and converted back

A disturbance in local magnetic ordering can propagate in a magnetic material in the form of a wave. Such a wave was first predicted by F. Bloch in 1929 and was named a spin wave as it is related to the collective excitations of the electron spin system in ferromagnetic metals and insulators. The wide variety of linear and nonlinear spin-wave phenomena boosted interest into the fundamental properties, while spin waves in the GHz frequency range were of great interest for applications in telecommunication systems and radars. Nowadays, spin waves are considered as potential data carriers for computing devices, as they have nanometre wavelengths, can be in the low-THz frequency range, provide Joule-heat-free transfer of spin information over macroscopic distances, and access to wave-based computing concepts.

The field of science that refers to information transport and processing by spin waves is known as magnonics. This name relates to the magnon—the spin-wave quantum associated with the flip of a single spin. The usage of magnonic approaches in the field of spintronics, hitherto dealing with electron-carried spin currents, gave birth to the emerging field of magnon spintronics. The scheme of magnon spintronics in the figure shows that, besides magnon-based elements operating with analogous and digital data, this field comprises also converters between the magnon subsystem and the electron-carried spin and charge currents. These converters interface the magnonic circuitry with spintronic and electronic environments. Modern spin-orbit interactions phenomena occupy an important role in the field of magnon spintronics.

Project publications

Published articles

  • Opportunities and challenges for spintronics in the microelectronic industry (Topical Review) 
    B. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov, J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A. V. Chumak, A. Hirohata, S. Mangin, S.O. Valenzuela,  M. C. Onbasli, M. d'Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, P. Bortolotti
    Nat. Electr. 3, 446459 (2020)
  • Bose-Einstein condensation of quasi-particles by rapid cooling
    M. Schneider, T. Brächer, D. Breitbach, V. Lauer, P. Pirro, D. A. Bozhko, H. Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E. Th. Papaioannou, B. Lägel, T. Löber, C. Dubs, A. N. Slavin, V. S. Tiberkevich, A. A. Serga, B. Hillebrands, and A. V. Chumak
    Nat. Nanotechnol. 15, 457–461(2020)
  • Magnon-phonon interactions in magnon spintronics (Invited Review)
    D. A. Bozhko, V. I. Vasyuchka, A. V. Chumak, and A. A. Serga
    Low Temp. Phys. 46, 383-399 (2020)

Selected prior publications

  • The SpinTronicFactory roadmap: a European community view
    B. Dieny, L. Prejbeanu, K. Garello, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. Demokritov, J. Akerman, P. Pirro, C. Adelmann, A. Anane, A. Chumak, A. Hiroata, S. Mangin, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez Diaz, O. Chubykalo-Fesenko, P. Bortolotti,
    SciTech Europa (2019)
  • Role of magnons and the size effect in heat transport through an insulating ferromagnet-insulator interface
    V. A. Shklovskij, V. V. Kruglyak, V. V. Vovk, and O. V. Dobrovolskiy,
    Phys. Rev. B 98, 224403 (2018)
  • Nonlinear relaxation between magnons and phonons in insulating ferromagnets
    V. A. Shklovskij, V. V. Mezinova, and O. V. Dobrovolskiy,
    Phys. Rev. B 98, 104405 (2018)
  • Temporal evolution of auto-oscillations in a YIG/Pt microdisc driven by pulsed spin Hall effect-induced spin-transfer torque
    V. Lauer, M. Schneider, Th. Meyer, Th. Braecher, P. Pirro, B. Heinz, F. Heussner, B. Laegel, M. C. Onbasli, C. A. Ross, B. Hillebrands, A. V. Chumak,
    IEEE Magn. Lett. 8, 3104304 (2017)
  • Spin-transfer torque based damping control of parametrically excited spin waves in a magnetic insulator
    V. Lauer, D.A. Bozhko, T. Brächer, P. Pirro, V.I. Vasyuchka, A.A. Serga, M.B. Jungfleisch, M. Agrawal, Yu.V. Kobljanskyj, G.A. Melkov, C. Dubs, B. Hillebrands, and A.V. Chumak,
    Appl. Phys. Lett. 108, 012402 (2016)
  • Magnon spintronics
    A.V. Chumak, V.I. Vasyuchka, A.A. Serga, and B. Hillebrands
    Nat. Phys. 11, 453 (2015) (Topical Review)
  • Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect
    M.B. Jungfleisch, A.V. Chumak, A. Kehlberger, V. Lauer, D.H. Kim, M.C. Onbasli, C.A. Ross, M. Kläui, and B. Hillebrands,
    Phys. Rev. B 91, 134407 (2015)
  • Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet/platinum bilayers
    M. Schreier, G.E.W. Bauer, V.I. Vasyuchka, J. Flipse, K. Uchida, J. Lotze, V. Lauer, A.V. Chumak, A.A. Serga, S. Daimon, T. Kikkawa, E. Saitoh, B.J. van Wees, B. Hillebrands, R. Gross, S.T.B. Goennenwein,
    J. Phys. D: Appl. Phys. 48, 025001 (2015)
  • Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications
    M.B. Jungfleisch, V. Lauer, R. Neb, A.V. Chumak, B. Hillebrands,
    Appl. Phys. Lett. 103, 022411 (2013)
  • Direct detection of magnon spin transport by the inverse spin Hall effect
    A.V. Chumak, A.A. Serga, M.B. Jungeisch, R. Neb, D.A. Bozhko, V.S. Tiberkevich, B. Hillebrands,
    Appl. Phys. Lett. 100, 082405 (2012)
  • Spin pumping by parametrically excited exchange magnons
    C.W. Sandweg, Y. Kajiwara, A.V. Chumak, A.A. Serga, V.I. Vasyuchka, M.B. Jungfleisch, E. Saitoh, and B. Hillebrands,
    Phys. Rev. Lett. 106, 216601 (2011)