

Curriculum Vitae, Andrii Chumak

Name:	Andrii V. Chumak, UnivProf. Dr. habil. 20.01.1982, male, married, two children
Address:	Nanomagnetism and Magnonics Faculty of Physics, University of Vienna Boltzmanngasse 5 A-1090 Wien, Austria
Contacts:	+43-1-4277-739-10 andrii.chumak@univie.ac.at https://nanomag.univie.ac.at
ORCID: Scopus ID: Google Scholar:	0000-0001-5515-0848 8219595500 https://scholar.google.de/citations?user=h8XwXewAAAAJ&hl=en

CURRENT POSITION

University Professor (Full Professor) Head of the Nanomagnetism and Magnonics Research Group Faculty of Physics, University of Vienna, Austria	since 2019
PREVIOUS POSITIONS	
Junior Professor of Experimental Physics and Leader of ERC Research Group Faculty of Physics, University of Kaiserslautern, Germany	2017–2019
<i>Research Associate</i> and <i>Privatdozent</i> of Experimental Physics (since 2016) AG Magnetismus, Faculty of Physics, University of Kaiserslautern, Germany	2011–2016
Postdoctoral Researcher AG Magnetismus, Faculty of Physics, University of Kaiserslautern, Germany	2009–2010
<i>Doctoral Student</i> Faculty of Radiophysics, Taras Shevchenko National University of Kyiv, Ukraine	2005–2008
<i>Visiting Researcher</i> Department of Physics, Colorado State University, USA	2004

EDUCATION

Habilitation, Faculty of Physics, University of Kaiserslautern, Germany Topic: "Magnonic crystals for magnon-based data processing", mentor: Prof. B. Hillebrands	13.06.2016
<i>Ph.D.</i> , Faculty of Radiophysics, Taras Shevchenko National University of Kyiv, Ukraine Topic: "Parametric restoration of elastically-scattered spin-wave signals", super.: Prof. G.A Melk	28.04.2009 ov
<i>Masters</i> in Radiophysics and Electronics, Master Diploma with Honours (20.06.2005) Faculty of Radiophysics, Taras Shevchenko National University of Kyiv, Ukraine	2003–2005
<i>Bachelor</i> 's in applied physics, Bachelor Diploma with Honours (23.06.2003) Faculty of Radiophysics, Taras Shevchenko National University of Kyiv, Ukraine	1999–2003

MAIN SCIENTIFIC INTERESTS

Magnonics, magnetization dynamics and RF applications

Nano-scale exchange magnonics, nonuniform and nonstationary systems, magnonic crystals, 5G RF devices **Quantum magnonics**

Single-magnon superconducting qubit physics, paramagnonics, cryogenic magnonics, magnon fluxonics

Unconventional computing and inverse-design machine learning magnoncis

Inverse-design magnonics, spin-wave logic and non-Boolean circuits, stochastic computing

Nonlinear Wave Physics

ersitat

Parametric instability, multi-magnon scattering, wavefront reversal, Bose-Einstein condensation

Spin-Orbit Spintronics and Magnon Spintronics

Spin pumping, spin-transfer torque (STT), spin Hall effect (SHE), spin Seebeck effect (SSE)

PUBLICATIONS AND PRESENTATIONS

3 book chapters and 11 invited reviews

108 peer-reviewed articles, 9948 citations in Scopus (1569 in 2022), *h*-index = 48

125 contributions to conferences and seminars (incl. 57 invited talks and 28 seminars)

MOST SIGNIFICANT SCIENTIFIC RESULTS

Inverse-design magnonics

Inverse-design magnonics [Nat. Comm. 2021] allows to specify any functionality first, and a feedback-based computational algorithm is used to obtain the device design.

The realization of nano-scale magnon directional coupler2018-2020The simulated [Sci. Adv. 2018] and realized experimentally [Nat. Electr. 2020] nano-scale spin-wavedirectional coupler is a universal device for binary logic, rf applications and unconventional computing. It isthe key building block of the half-adder – the first integrated magnonic circuit.

The formation of Bose-Einstein Condensation of magnons by rapid cooling2020We proposed and experimentally realized [Nat. Nanotech. 2020] a conceptually new method of the
formation of BEC of the quasiparticles. It is based on the rapid decrease in the phonons' temperature of a
system and does not use any coherent source like in the previous studies.

The investigation of spin waves in sub-100 nm structures

We reported [PRL 2019] on the first fabrication and experimental characterization of spin waves in the insulating magnon waveguides with the lateral sizes down to 50 nm. The phenomenon of "exchange unpinning" was discovered. Propagating spin-wave packets in such nano-waveguides were investigated [Nano Lett. 2020] and proven the feasibility of magnonics on the CMOS scale.

The development of magnon transistor

The proof-of-concept magnon transistor was realized [Nat. Commun. 2014] and opened a way for all-magnon technology in which data is carried and processed by magnons rather than by electrons. Nowadays, magnon computing is a broad research direction [JAP Tutorial 2020].

The usage of spin-orbit torque in magnonics (magnon spintronics)

It was shown in a set of >10 papers that the magnons, independently of their nature, coherency and properties, can be efficiently detected via SP/ISHE [<u>APL 2021</u>] and amplified or excited via SHE/STT [<u>PRL 2021</u>].

A set of investigations on magnonic crystals

In a set of around 20 papers, different types of magnonic crystals were proposed, investigated experimentally, and utilized for data processing [JPD 2017]. In particular, a dynamic [Nat. Comm. 2010] and an optically-reconfigurable [Nat. Phys. 2015] magnonic crystals were developed.

CURRENT PROJECTS

FWF-WEAVE project 66155 Paramagnonics	01/2024 - 12/2026
Propagating Low-Energy 4 <i>f</i> Paramagnons, 295 k€	
ERC Proof of Concept Grant 101082020 5G-Spin	09/2022 - 02/2024
Nanoscale spin-wave RF filters and multiplexers for 5G communication systems, 150 ${\rm k}{\rm \xi}$	
FWF-ANR project I 4917-N MagFunc	10/2020 - 09/2024
Non-reciprocal 3D architectures for magnonic functionalities, 405 k€	

since 2011

2014

2019-2020

2008-2017

2021

FUNCTIONS IN RESEARCH SOCIETIES

Member of International Advisory Committee of JEMS	since 2020
Full Member of the Wolfgang Pauli Institute (WPI), Vienna, Austria	since 2020
Member IEEE Magnetics Society Technical (since 2016) and Education Committee (since 2020)	since 2016
Co-Chair of the 3rd International School on Magnonics, Sept. 16-21, 2018, Kyiv, Ukraine	2018
Chair of the Nano-Magnonics 2018 Workshop, Diemerstein, February 19-21, 2018	2018
Chair of WE-Heraeus-Seminar and Guest Editor of JPD, January 6-8, 2016, Bad Honnef, German	y 2016
Member of the Editorial Review Board of the IEEE Magnetics Letters	2014 – 2016
Publication Chair of the ICMM 2012 and Guest Editor of the IEEE Trans. on Magnetics	2012
Program Committee Member: ICM 2024, Intermag 2023, Intermag 2021 (online), MAINZ Summer School 2018, ICM 2018, Magnonics 2017, MAINZ Summer School 2017,	
Intermag 2017, Intermag 2014, Intermag 2012	since 2012
Memberships: IEEE MagSoc (<i>since</i> 2011), DPG (<i>since</i> 2011), Senior Member of IEEE Mag. Soc. ÖPG (<i>since</i> 2019), UPV (<i>since</i> 2019), EMA (<i>since</i> 2020)	(since 2016), since 2012

PRIZES AND AWARDS

ERC Proof of Concept Grant 101082020 5G-Spin	2022
ERC Starting Grant 678309 MagnonCircuits	2015
Scholarship for PhD studies, Taras Shevchenko National University of Kyiv, Ukraine	2005 – 2008
Award from the National Academy of Sciences of Ukraine	2004

10 SELECTED PUBLICATIONS

- Q. Wang, R. Verba, B. Heinz, M. Schneider, O. Wojewoda, K. Davídková, K. Levchenko, C. Dubs, N. J. Mauser, M. Urbánek, P. Pirro, A. V. Chumak, *Deeply nonlinear excitation of self-normalized short spin* waves, Sci. Adv. 9, eadg4609 (2023), <u>DOI: 10.1126/sciadv.adg4609</u>
- Q. Wang, A. V. Chumak and P. Pirro, *Inverse-design magnonic devices*, Nat. Commun. 12, 2636 (2021), DOI: 10.1038/s41467-021-22897-4
- Q. Wang, M. Kewenig, M. Schneider, R. Verba, F. Kohl, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, S. D. Cotofana, O. V. Dobrovolskiy, T. Brächer, P. Pirro, and A. V. Chumak, A magnonic directional coupler for integrated magnonic half-adders, Nat. Electronics 3, 765 (2020), DOI: 10.1038/s41928-020-00485-6
- M. Schneider, T. Brächer, D. Breitbach, V. Lauer, P. Pirro, D.A. Bozhko, H. Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E.Th. Papaioannou, B. Lägel, T. Löber, C. Dubs, A. N. Slavin, V. S. Tiberkevich, A. A. Serga, B. Hillebrands, and A. V. Chumak, *Bose–Einstein condensation* of quasiparticles by rapid cooling, Nat. Nanonotech. 15, 457 (2020), <u>DOI: 10.1038/s41565-020-0671-z</u>
- Q. Wang, B. Heinz, R. Verba, M. Kewenig, P. Pirro, M. Schneider, T. Meyer, B. Lägel, C. Dubs, T. Brächer, and A. V. Chumak, Spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides, Phys. Rev. Lett. 122, 247202 (2019), DOI: 10.1103/PhysRevLett.122
- 6. Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, and A. V. Chumak, *Reconfigurable nano-scale spin-wave directional coupler*, Sci. Adv. 4, e1701517 (2018), DOI: 10.1126/sciadv.1701517
- 7. A. V. Chumak, A. A. Serga, and B. Hillebrands, Magnonic crystals for data processing (invited review), J. Phys. D: Appl. Phys. 50, 244001 (2017), DOI: 10.1088/1361-6463/aa6a65
- A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, *Magnon spintronics*, Nature Phys. 11, 453 (2015), DOI: 10.1038/nphys3347
- 9. A. V. Chumak, A. A. Serga, and B. Hillebrands, *Magnon transistor for all-magnon data processing*, Nat. Commun. 10, 1038 (2014), DOI: 10.1038/ncomms5700
- 10.A. A. Serga, **A. V. Chumak**, and B. Hillebrands, *YIG magnonics*, J. Phys. D: Appl. Phys. **43**, 264002 (2010), DOI: 10.1088/0022-3727/43/26/264002